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Laminar natural convection about an isothermally heated 
sphere at small Grashof number 

By FRANCIS E. FENDELL 
TRW Systems, Redondo Beach, California 
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The flow induced by gravity about a very small heated isothermal sphere intro- 
duced into a fluid in hydrostatic equilibrium is studied. The natural-convection 
flow is taken to be steady and laminar. The conditions under which the Boussi- 
nesq model is a good approximation to the full conservation laws are described. 
For a concentric finite cold outer sphere with radius, in ratio to the heated sphere 
radius, roughly less than the Grashof number to the minus one-half power, a 
recirculating flow occurs; fluid rises near the inner sphere and falls near the outer 
sphere. For a small heated sphere in an unbounded medium an ordinary pertur- 
bation expansion essentially in the Grashof number leads to unbounded velocities 
far from the sphere; this singularity is the natural-convection analogue of the 
Whitehead paradox arising in three-dimensional low-Reynolds-number forced- 
convection flows. Inner-and-outer matched asymptotic expansions reveal the 
importance of convective transport away from the sphere, although diffusive 
transport is dominant near the sphere. Approximate solution is given to the non- 
linear outer equations, first by seeking a similarity solution (in paraboloidal 
co-ordinates) for a point heat source valid far from the point source, and then by 
linearization in the manner of Oseen. The Oseen solution is matched to the inner 
diffusive solution. Both outer solutions describe a paraboloidal wake above the 
sphere within which the enthalpy decays slowly relative to the rapid decay out- 
side the wake. The updraft above the sphere is reduced from unbounded growth 
with distance from the sphere to constant magnitude by restoration of the con- 
vective accelerations. Finally, the role of vertical stratification of the ambient 
density in eventually stagnating updrafts predicted on the basis of a constant- 
density atmosphere is discussed. 

1. Introduction 
The flow (assumed steady and laminar) induced about a small heated sphere 

introduced into a fluid in hydrostatic equilibrium is examined in the Boussinesq 
approximation (Spiegel & Veronis 1960). This approximation treats the fluid 
as incompressible and of constant properties, except for the buoyancy force; 
in that term, for small deviations from hydrostatic equilibrium owing to non- 
uniform heating in a gravitational field, the deviation from ambient density may 
be linearly related to the deviation from ambient of the other thermodynamic 
variables describing the thermodynamic state of the fluid. The ambient density 
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is here taken as effectively constant; that is, the distance over which the ambient 
density falls an appreciable fraction is taken to be much larger than other typical 
lengths characterizing the region of interest. 

The treatment of finite geometries in low-Grashof-number flow has received 
relatively little attention. Nevertheless, the hot-sphere problem bears directly 
on droplet behaviour in a meteorological or liquid-rocket-engine context. Fur- 
thermore, the problem reveals a natural-convection analogue (Mahony 1956) of 
the Whitehead paradox of forced convection (Kaplun & Lagerstrom 1957; 
Proudman & Pearson 1957). The Whitehead paradox concerns the observation 
that, for unbounded steady low-Reynolds-number flow past a finite-size three- 
dimensional body, an asymptotic expansion in the Reynolds number based on 
the dominance of diffusive over convective transport everywhere in the flow 
field is not uniformly valid beyond the lowest-order (Stokes) solution. 

The problem of a slightly heated sphere introduced into a hydrostatically 
stratified fluid is seemingly amenable to small-perturbation analysis. If one 
‘switches on’ a gravitational field in an already developed flow of great extent 
parallel to the field, small-perturbation analysis is inappropriate. 

2. The general mathematical formulation and special solution for a 
finite outer sphere 

If gravity acts in the negative x-direction, and if constant Prandtl number 
and specific heats are adopted, then the non-dimensionalized boundary-value 
problem is 

+(Y-1)M2(@+q.Vp),  (3) 

g = p h ,  U @=defq:T, T=h(V.q)I+jidefq,  (4) 

r = l :  q = O ,  h = l + e ,  ( 5 )  

r = R :  q = 0 ,  h = l .  (6) 

A partial list of symbols and definitions is given at  the end of the paper. 
Jacob (1949) termed G the gravity number and Eshghy & Morrison (19G6) 
called M2 the compressibility factor. The parameter u, related to lapse rate 
effects (stratification of the ambient density in the direction of the impressed 
gravitational body force), is yM2/G. The reference thermodynamic state is that 
which existed at the centre of the sphere prior to the introduction of the heated 
sphere. For simplicity only, the ambient enthalpy will be taken as constant. 
The parameter E = (enthalpy of the heated sphere - ambient enthalpy)/ambient 
enthalpy. Equation (6) considers the heated sphere to lie within a concentric 
but finite outer spherical container. Later, the case R + 00 is considered, and (6) 
is relaxed to 

r+m: q,,q,bounded; h + l .  (7) 
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The next heat flux through any concentric spherical surface must equal the total 
heat flux at  the sphere surface for a steady state to persist. Purported solutions 
violating this condition, even if only at  r+co (Hossain 1966), are not satis- 
factory. It may be noted that the Grashof number does not in general appear; 
its constituent non-dimensional factors s and G act independently (Jacob 1949). 
The solution possesses azimuthal symmetry ; the initial ray of the polar angle 8 
is taken to be antiparallel to gravity. 

For the case R = o[(sG)-*], G < O(1) and B < 1, 

solution is sought in the form of a conventional perturbation expansion (Ostrach 
1964); in this special case the Grashof number sG appears: 

where the viscosity coefficients are taken to be functions of the enthalpy only; 

(14) 

V . q l =  0, p1 = -hl for s%aa-l, (15) 

(16) 

A aVpe = -pez, pe = pe * pe = pe = e-zla 21 1 for a % z, 

eG[V(B!l21) + (V x 41) x Sll = - VP1- P12 - v x (V x e), 
1 

Pr 
EG(ql. Vh,) = - V2hl for M 2  < 1. 

Equations (15)-( 17) represent the Boussinesq approximation (Landau & Lifshitz 
1959); they have been applied to the present problem, without formal justifi- 
cation, by Mahony (1956). 

Here EG < 0(1)  is examined so the convective transport in (15) and (16) is 
neglected as a lowest-order approximation. It will now be shown that, despite 
implications to the contrary (Ostrach 1964), the resulting linear set of equations 
is often not adequate for treating small Grashof number flows. If 

then V2hl = D4$,- 2Ql(p) (r $-p%) = 0. 

Hence, since hl(l) - 1 = hl(R) = 0, 
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where A,,  B,, C, and D, are constants of integration assigned by the no-slip 
conditions 

The algebraic details are omitted but, of course, calculation shows that the flow 
is such that fluid rises near the warmer inner sphere and falls near the colder 
outer sphere in a simple one-cell recirculation. 

If q t  is the magnitude of the heat flux density to the fluid and kX, is the ambient 
thermal conductivity, then the Nusselt number Nu is 

As R-tco, lqll -+a; in fact, lqll grows linearly with r.  (Despite this singular 
behaviour the Nusselt number remains bounded and approaches 2 .) Whenever 
even a small temperature difference is maintained over a great expanse parallel 
to a gravitational field, large speeds may be induced, The expansions (8)-(13) 
are invalid far from the sphere because the sphere radius is no longer a typical 
length and diffusive transport no longer dominates convective transport. 
Substitution of the diffusive solution (20)-(22) into (16) and (17) reveals that, as 
BT (eG)-&, the convective terms cannot be neglected. The expansions (8)-( 13) 
comprise only the inner expansions of an inner-and-outer (matched asymptotic) 
expansion procedure, An outer expansion valid far from the sphere must be in- 
troduced; traditionally, at  least far from the sphere, to lowest order in the outer 
field the sphere is reduced to a point source of momentum and energy. 

3. The inner expansion for a sphere in an unbounded medium 
The case 0 < B < B < 1 is examined and the expansions (8)) (9), (12) and (13) 

are again adopted for the enthalpy and density close to the sphere. However, 
the expansions for the pressure and velocity are generalized: 

q = o +  - q,+eq,+o(€),  (24) 

( 2 5 )  

id" 
P =Pe+ (;)$ - P O + % + O ( " ) .  

The motivations for such a generalization are many. First, just as the energy 
equation is diffusively dominated, so now is the momentum equation to lowest 
order beyond hydrostatic conditions. The lowest-order velocity is now O[(eg*a*)B] 
and arises from a buoyancy-driven outer flow shearing the fluid near the inner 
sphere; such a driving mechanism could not arise for R = o[(eG)-$]. The particular 
choice (s/G): permits the convective transport of momentum and energy, neg- 
lected in the equations for q, aiidp,, to serve as forcing functions in the equations 
for q,, p1 and h,-a commonly occurring feature of perturbation expansions. 
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Matching to the outer somcion ultimately determines whether or not qo and pO 
vanish, for, although it still holds that 

from (5), the remaining constants of integration are assigned on the basis of 
compatibility with the outer expansion in domains of overlapping validity. 

The governing equations for pe and pe remain those given in (14). But now 

v.qo = Vpo+V x (V x 9,) = 0, 

- VP1 -p12 - v x (V x 41) = V f M )  + (V  x so) x so, 
V . q 1  = 0, p1 = -h1, 

V2hl = 0. 

It is anticipated in view of (20)-(22) that one may write 

h, = [Ao+(1 -A0)r - l ] ,  

$ko = B,(r2 - $r + ir - l )  Q,(p), 

where the boundary conditions at  r = 1 have been satisfied. Then 

3B 
po = - s l P l ( p )  + const. 

The curl and divergence of ( 2 8 )  give 

Use of the expressions for h, and Po in these last two equations gives, in view of 
the no-slip boundary conditions, 

(anrn+bnr-n-1)Pn(p)+P@(1-Ao)+3B2, 2 
n=O 

+ 



168 F .  E .  Fendell 

4. The outer expansion 
Far from the sphere the strained radial co-ordinate P is introduced, where 

P = (Gs)+r, (37) 

q(P,p, G, E )  = E W B Q ( P , ~ )  + . .., (40) 

/u(?,p, G, E )  = 1 + E~G$,E~(?, p) + . . . , (41) 

A(?, p7 G, e) = A, + E~GJX,(P, ,u) + . . . , (42) 

p ( P , p , G 7 ~ )  = CX~,(Z)+EP(?,,U)+ .... (43) 

These scalings, except for those suggested for density and enthalpy, are exactly 
equivalent to those proposed by Mahony (1956). Substituting (38)-(43) into 
(1)-(4) gives (taking pe E 1) 

(44) 

(45) 

X = =  -0 ,  P . Q = O ,  

o($$2) + (e x Q) x Q = - PP + 0$ - 9 x (a x Q), 

Q .Q@ = - 1 V2@. 
Pr 

Equation (7 )  requires that: O(P+co,p)+0, Q(?+co,p) is bounded. 
The use of asymptotic expansions has still left a lowest-order problem (above 

hydrostatic) that is formidably non-linear if one wishes an exact solution. First, 
a solution to the non-linear set valid for P $ 1 will be attempted by similarity 
analysis. Such a solution cannot be meaningfully matched to  the inner expansion 
since such a matching occurs in the limit P+O. Then, an approximate solution 
will be sought by linearizing the non-linear convective terms in the manner of 
Oseen; the motivation for so proceeding is furnished by properties of the simi- 
larity solution. 

5. The point-source solution for the outer flow 
Zel'dovich (1937) noted on dimensional grounds that, if one neglected axial 

diffusion of momentum and energy, (44)-(46) admitted of a similarity solution 
in the laminar axisymmetric case in terms of the cylindrical polar co-ordinate 
p 2 / i  (see also Prandtl 1952). Here p is the two-dimensional radial co-ordinate. 
Shuh (1948) was the first to state the formal boundary-value problem, to which 
Gutman (1949) found numerical solutions and Yih (1956) closed-form solutions 
for special values of the Prandtl number. Mahony (1956), Fujii (1963) and Brand 
& Lahey (1967) have repeated the derivation in recent years without adding any 
new findings. Although the planar case is of no direct relevance here, it may be 
noted that analogous results were found by the same group of authors to the two- 
dimensional case of a horizontal line source. Furthermore, Schmidt (1941) and 
Szablewski (1966) have derived similar results for point and line sources in 
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turbulent fields in which exchange processes are modelled by simple mixing- 
length theories. Fendell & Smith (1967) later applied the similarity theory to the 
full equations (44)-(46) and showed that within a paraboloidal region in the far 
field above the body (i.e. for z" @ 1,Z @ p) the similarity theory was indeed a first 
approximation to  the far-field solution. I n  this sense the point-source solution 
represents the lowest-order term in a co-ordinate expansion within the first non- 
trivial outer problem of the matched asymptotic parametric expansion. Clearly 
the matching of the inner and outer solutions involves the limit P - t  0, and thus the 
point-source solution is unsatisfactory for matching. However, the point-source 
solution does characterize the outer flow in a way that will be exploited later. 

Here a solution, valid everywhere (except p = - 1) for P $ 1, will be sought for 
a point heat source a t  the origin of co-ordinates. Instead of the cylindrical polar 
co-ordinates adopted by all previous workers, use is here made of rotationally 
symmetric parabolic co-ordinates : 

Z + i p  = *($+i7)2. (47) 

Equations (44)-(46) become (Q = Q6[+Q7@): 

(48) 
a a 

- [ $ ~ r ( E 2 + ~ 2 ) ~ Q ~ l + - ~ E ~ ( E 2 + ~ 2 ) f Q 7 1  = 0, a t  a7 

The following similarity forms, motivated by Zel'dovich's original arguments, 

p = HE, r2). (54) 

At this point is is quite useful to anticipate that to lowest order for P 1 con- 
duction in the g-direction is negligible compared with conduction in the 
7-direction. Then, combining continuity and energy conservation yields 
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If, as r+m, 0 = o(7-l) and QIrO = o ( ~ - ~ ) ,  then (since analytic behaviour of all 
dependent variables as 7 -+ 0 is required) integration over all 7 yields 

If x = 7 2 ,  then substitution of the similarity forms gives 

[ f ( r )  = F(x) ,  e(r)  = 7 ( 4 1  

If 52 B 1 ,  1 : F ’ ~ d x  .i2 2H, (58) 

where H is the net heat flux from the sphere to the fluid. The quantity H may be 
related to parameters arising in the boundary-value problem by use of (23): 

H = 2.rrNuIPr. 159) 

Probably, as R -+ co, N u  -+ 2 to lowest order, but Nu will be left arbitrary for now. 
Under the similarity forms (52)-(54),  equations (48)-(51) become 

2FF‘ F2 

x x2 
- - + X(F’)2- 4F” T +  4P” f (F’)’] , (60)  %=-- 

(4xF”)’ + 2FF” + T = 

(62) 
1 
R 

(2x7’ + PrF7)’ = - [4X7’ + PrT(XP‘ + F ) ] ,  

where R = E2 + x = 2r“. For 5 9 1 ,  the leading equations are 

a? - = 0, 
ax (63)  

2xF”’ + FF” = - i (4F” + 7), (64)  

2XT’+PYFT = 0. (65)  

The boundary condition O(i+  co, p) 3 0 has been used to evaluate a constant of 
integration in (65) .  The other restraints on 3’ and T are 

P(0) = 0, 

~ ( 0 )  = -4F“(O), 

F’(x -+ co) -+ 0, 

where (66) and (67) assure analytic behaviour near the source at  x = 0, and (68)  
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assures that the velocity dies off far from the source (except directly above the 
source). Equation (69 )  expresses the invariance of the energy released per unit 
time, with distance from the source. 

I n  general, ( 6 4 )  and ( 6 5 ) ,  subject to (66) - (69) ,  require numerical solution; 
however, Yih (1956)  has given closed-form solutions for Prandtl numbers one 
and two. Specifically, 

6x = - 4 F ”  = _--A 48B B l =  3 ( - )  2 4  (70)  
P r  = 1:  F =- 

B , + x ’  (B ,  + x ) ~  ’ nNu ’ 

The streamlines describe a reverse-stagnation-like flow, is .  an inflow to- 
wards the axis of symmetry and an updraft along the axis above the sphere. The 
isotherms are like tear-droplets stretching upward from the point source. It 
may readily be confirmed that the anticipations concerning the solution stated 
below ( 5 5 )  are fulfilled. 

On the axis of symmetry above the point heat source (to which the hot sphere 
has been reduced by the co-ordinate stretching, a t  least for P B 1) the perturba- 
tion enthalpy 0 falls off only as P - l ;  outside a parabolic wa,ke above sphere 0 
falls more rapidly (F4 for P r  = 1 ,  P-5 for P r  = 2 ) .  The velocity also displays a 
parabolic wake above the sphere. For P r  = 1 ,  equations (52 )  and (70 )  give 

Forp = l ( 8  = 0), Q,, = 0 but Qt = 6/B,. The velocity does not go to zero, but rather 
remains invariant with height. Outside the wake there is a weakly decaying in- 
flow that feeds the updraft : 

(73) 

The task of finding a solution to the outer equations (44) - (46)  valid as i + O  
so that it may match to the inner solution [ (30) - (32) ,  ( 3 5 )  and ( 3 6 ) ]  remains. 
An approximate approach that models the convective terms adequately where 
they are important (F $ l), that retains the diffusive transport as F+O, and that 
yields tractable equations for all F is required. For the analogous forced-convec- 
tion problem Oseen linearized the non-linear terms about the prescribed uniform 
free-stream velocity; this empirical approximation was later given more basis for 
very small Reynolds numbers when matched inner-and-outer expansions yielded 
the Oseen equations as the correct far-field equations describing the first per- 
turbation to the free-stream conditions. Weinbaum (1964) has successfully in- 
voked the spirit of the Oseen linearization for a contained large-Grashof- 
number natural convection flow. Here the Oseen linearization will be applied to 
an unbounded low-Grashof-number flow by noting that, while no free-stream 
velocity is prescribed, an obvious choice for the velocity in the convective trans- 
port term naturally arises from the point-heat-source solution. 



172 P. E. Pendell 

6. The Oseen linearization of the outer equations and matching of 
solutions 

The Oseen linearization of (44)-(46) is (Carrier 1953) 

C =  -0, V . Q = O ,  (74) 

E Q - V P + 0 2 =  0, 

Jo  = 0, 
where the Oseen operation is 

and C is the Oseen constant, selected on the basis of the point-heat-source 
similarity solution. For the case Pr = 1, which has implicitly been adopted in 
writing (76), C = 6/B,; for other Prandtl numbers, similar results can be derived. 
The outer boundary conditions stated after (46) for F-tm still hold. 

It is convenient to restate the problem posed in (74)-(76) in terms of two func- 
tions H and J where 

V J =  0, ZH = 0, &@ = 0. (77) 

(78) 
- 8J 

2 '  
Then P =  - C - l L ( J - H ) = a  Q =  -H2+C-lQ(H-J) .  

The solution to the last of (77) is 

0 = G(P,p) exp (&Cfp), (79) 

where K,+g(&Ci) is the half-order modified Bessel function bounded at  infinity: 

It is convenient to match the inner and outer representations of the enthalpy 
h at this stage. Matching is carried out according to the requirement that the 
outer expansion to O[f,(s, G)]  of the inner expansion to O[g,(s, G)]  must be equal 
to the inner expansion to O[gn(e, G ) ]  of the outer expansion to O[f,(s, G)]. From (9), 
(39), (30), (39), (79) and (80) it is readily seen that A ,  = 0, C, = C/n and C, = 0 
for n > 0. This result confirms anticipations implicit in writing (30) and gives 

The outer solution for the enthalpy given by (39) and (82) is in fact uniformly 
valid through O(s) for allr 3 1. Equation (82) describes a parabolic wake above the 
sphere; on the vertical axis the perturbation enthalpy decays a t  a rate inversely 
proportional to F as F + GO (this agrees with the point-source result). Outside the 
wake the enthalpy decays exponentially in the Oseen linearization, although it 
decays only algebraically in the point-source solution. The generalization of the 
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inner and outer solutions and matching procedures for a non-isothermally heated 
sphere is evident. Since near the sphere h = 1 + E T - ~  +ole), it  is confirmed from 
(23) that to lowest order the Nusselt number N u  = 2 ,  independent of the Prandtl 
number. An analogous result holds in low-Reynolds-number low-Mach-number 
forced-convection fiow past an isothermal sphere. 

Substitution of (82) in the middle equation of (77) yields 

Substitution of (82) in the first equation of (77) yields 

where D,, E, and Fk are constants of integration; boundedness criteria have 
rejected the other modified Bessel function as a complementary function for H ;  
and Ei( - x) is the well-tabulated exponential integral function 

If Q,(P -+ 00, p) -+ 0, except possibly for p = 1, then E, = 0 for all k > 0. 
The Oseen linearization gives for large P 

H N O{ - exp [$C?(p - l)]}, (86) 

Equations (86) and (87) predict a radial inflow and axial updraft, roughly the 
reverse of a classical potential stagnation-point flow. The axial velocity goes to 
zero algebraically on the axis of symmetry far below the sphere and goes to a 
constant, finite updraft on the axis far above the sphere. The radial influx 
(radial in a cylindrical sense) falls off inversely with distance from the axis of 
symmetry, far from the axis of symmetry; the radial influx is greater above the 
sphere than below it. The point-source solution developed earlier agrees in 
essence with these results. 

The matching of velocities is readily carried out. From (37), (78), (83) and (84) 
as !f -+ 0 the outer expansion behaves as 

where D, = F, = 0 for all k 
can be found from (18), (24), (31) and (35). Since the inner solution is 

0 to permit matching to the inner solution, which 
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B,  = -C-1 for compatibility of inner and outer expansions. Consideration of 
the O(s )  inner terms for the velocity similarly requires, for compatibility with 
(88) and (89)) that A: = BZ = 0 for all n > 0 except Bg = - a  and both Bg 
and BT are unassigned to this order. 

From (78), (83) and (84) 

1 
P = -- Cr" [I - exp {&Cf(,u- I)}]. 

From (43) and (92) the outer expansion as f + O  behaves as 

The inner expansion for the pressure can be found from ( 2 5 ) ,  (32) and (36). 
Compatibility requires that a, = 0 for all n > 0 except a. = 2 - l ( C 2 -  1). 
Members of the set b, are unassigned to this order, although some may be found 
to vanish by use of (28). However, the matching of the inner and outer pressure 
representations is established and the demonstration of the compatibility of the 
expansions completed. 

7. The lapse-rate effect 
The existence of a constant updraft above the sphere arises from adopting a 

constant-density ambient state; it  would be observed for a heated sphere intro- 
ducedinto anot-too-tall liquid column. Gases are more compressible and, at  least 
by the time one studies heights x of the order of cc, which is the ambient density 
decay rate for an isothermal atmosphere, the vertical stratification of the ambient 
gas must be considered. The outer equations of state and of continuity may need 
modification but the basic term that accounts for stratification is the q . Vpe ex- 
pression in the energy conservation relation. The reduction of ambient density 
with height eventually eliminates the density discrepancy of rising gas heated by 
the sphere. This 'energy barrier' stagnates and spreads out an updraft in the 
atmosphere, just as the outer sphere stagnates and spreads out an updraft in the 
concentric-sphere geometry examined earlier in $ 2 .  The turbulent entrainment of 
cooler ambient air, also omitted in the current theory, hastens the deceleration. 

Although many mathematical details of the inner-and-outer matching pro- 
cedure have yet to be rigorously carried out for the constant-density problem, 
it would seem that the most important physical understanding would now be 
derived from a quantitative study of a buoyancy-driven column in a spatial 
domain tall enough so that vertical stratification becomes an important effect. 

The author wishes to acknowledge with deep gratitude many helpful sugges- 
tions by Prof. G. F. Carrier of Harvard University. He is also indebted to Prof. 
I-D. Chang of Stanford University for a stimulating discussion. This research 
was supported by the U.S. Army Research Office (Durham, Korth Carolina) 
under contract DAHC04 67 C 0015. 
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Partial list of symbols 
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radius of heated sphere 

a2 1 -p2 a2 

ar2 r2 ap2 
differential operator - + ~ - 

gravity number, p,*U*a"/z 

magnitude of gravitational acceleration 

the uniform enthalpy of the hydrostatic atmosphere 

enthalpy divided by h$ 

a l a  
differential operator ~ - + - - 

1 - p 2 a r  r ap 

compressibility factor ( U*)2 / (y -  1) h$ 

pressure divided by 2 U*/a* 
pressure for hydrostatic equilibrium divided by pg 

pressure at origin of co-ordinates prior to introduction of sphere 

velocity divided by U* 

Gegenbauer polynomial 1 P,(pl) dp, 

outer sphere radius divided by a* ; also, cz i- q2 = 27 

radial co-ordinate divided by a* 

quantity with the dimensions of a speed p$g*(a*)2@ 

ambient density decay rate p,o*/(z  U*/a*) 

normalized temperature difference (hZphele - h$)/h,o* 

bulk viscosity coefficient divided by 3 
cos 0 where 0 is the spherical polar angle measured from a ray antiparallel 

shear viscosity coefficient divided by 2 
density a t  origin of co-ordinates prior to introduction of the sphere 

density divided by 0: 

density for hydrostatic equilibrium divided by p$ 

azimuthal angle in spherical polar co-ordinates 

P 

-1 

to gravity 

Subscripts and superscripts 

e pertaining to hydrostatic equilibrium 

* dimensional quantity - a scaled variable of the outer expansion 
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